乳铁蛋白修饰纳米脂质载体的制备及其脑靶向性评价

肖衍宇陈曦,邹浪,陈志鹏,张明菲,平其能

中国药学杂志 ›› 2013, Vol. 48 ›› Issue (20) : 1755-1760.

PDF(1654 KB)
PDF(1654 KB)
中国药学杂志 ›› 2013, Vol. 48 ›› Issue (20) : 1755-1760. DOI: 10.11669/cpj.2013.20.016
资源与鉴定

乳铁蛋白修饰纳米脂质载体的制备及其脑靶向性评价

  • 肖衍宇1a,1b,陈曦1a,邹浪2,陈志鹏3,张明菲1a,平其能1a,1b,*
作者信息 +

Preparation of Lactoferrin-Modified Nanostructured Lipid Carriers and Evaluation of its Brain Targeting Efficiency

  • XIAO Yan-yu1a,1b, CHEN Xi1a, ZOU Lang2, CHEN Zhi-peng3, ZHANG Ming-fei1a, PING Qi-neng1a,1b
Author information +
文章历史 +

摘要

目的 选用乳铁蛋白(Lf)为脑靶向配体,构建受体介导的脑靶向姜黄素纳米脂质载体(Lf-Cur-NLCs),对其理化性质及体内脑靶向效率进行评价。方法 采用熔融-乳化法制备姜黄素纳米脂质载体(Cur-NLCs),通过静电作用在姜黄素纳米脂质载体表面吸附乳铁蛋白,得到不同乳铁蛋白含量修饰的Lf-Cur-NLCs。考察其形态、粒径、Zeta电位、血浆稳定性及在含1%聚山梨酯80的生理盐水中的释放行为;选取乳铁蛋白质量浓度分别为0.5、1.5、2.0 mg·mL-1时制备的载荧光显像剂NIRD-15的乳铁蛋白修饰纳米脂质载体(分别标记为Lf1-NLC、Lf3-NLC和Lf4-NLC)进行小鼠尾静脉注射,采用活体成像系统观察小鼠活体及离体器官中药物荧光强度,评价Lf-NLCs的脑靶向性。 结果 姜黄素纳米脂质载体和乳铁蛋白姜黄素纳米脂质载体体系均呈类球形。姜黄素纳米脂质载体平均粒径(187.5±4.7)nm,Zeta电位(-23.7±2.9)mV。乳铁蛋白姜黄素纳米脂质载体体系平均粒径范围167.8~299.9 nm,Zeta电位的分布范围为-26.87~-13.03 mV。乳铁蛋白与姜黄素纳米脂质载体的静电吸附作用存在一个吸附与解吸附的过程,当乳铁蛋白浓度为2.0 mg·mL-1,温孵时间为6 h时,乳铁蛋白在姜黄素纳米脂质载体表面的吸附趋于饱和。乳铁蛋白姜黄素纳米脂质载体在血浆中具有较好的稳定性,体外释放具有明显的缓释特征。与NLCs相比,尾静脉注射5 min后,姜黄素纳米脂质载体在脑内有较强的荧光,说明姜黄素纳米脂质载体能主动靶向脑组织,同时研究发现Lf3-NLC的脑靶向效果最好。结论 本实验利用静电吸附作用成功构建了具有脑靶向功能的姜黄素纳米脂质载体,避免了靶向载体设计中的化学合成过程,工艺简单,具有较好的发展前景,但载体脑靶向能力与乳铁蛋白的用量有关。

Abstract

To construct receptor-mediated lactoferrin-modified curcumin-loaded nanostructured lipid carriers(Lf-Cur-NLCs)and investigate its in vitro physicochemical properties and in vivo brain targeting efficiency. METHODS Cur-NLCs were prepared by melt-emulsification method, and then lactoferrin(Lf)was adsorbed onto the surface of Cur-NLCs via electrostatic interaction to form Lf-Cur-NLCs. Lf-Cur-NLCs with different concentrations of Lf were characterized in terms of shape, diameter, Zeta potential, serum stability and in vitro release of Lf-Cur-NLCs in saline containing 1% Tween 80. Additionally, Lf-NLCs labeled with NIRD-15, a fluorescent imaging agent, were prepared with Lf at concentrations of 0.5, 1.5 and 2.0 mg穖L-1(marked for Lf1-NLC, Lf3-NLC, and Lf4-NLC, respectively). After iv injection in mice, living animal imaging system was used to observe the fluorescence intensity of NIRD-15 in the living animals and isolated organs to evaluate the brain targeting of Lf-NLCs. RESULTS Cur-NLCs were spherical with average particle size of(187.5?4.7)nm and Zeta potential of(-23.7?2.9)mV. The average diameter of Lf-Cur-NLCs with spherical shape was between 167.8-299.9 nm. The Zeta potential was between-26.87--13.03 mV. When the concentration of Lf was 2.0 mg穖L-1 and the incubated time was 6 h, the adsorption of Lf at the surface of the Cur-NLCs was saturated. Lf-Cur-NLCs were stable in serum, and the release of Cur from Lf-Cur-NLCs was slowed down. Compared with NLCs, there was a strong fluorescence in the brain after iv injection of Lf-NLCs, indicating that Lf-NLCs were more effective than NLCs in brain targeting, while Lf3-NLCs were the most effective one. CONCLUSION Lf-NLCs are constructed successfully for brain targeting via electrostatic adsorption. The established process avoids chemical synthesis in the targeting drug delivery system design. However, the ability of brain targeting of the carriers is related with the amount of Lf.

关键词

乳铁蛋白 / 姜黄素 / 纳米脂质载体 / 静电吸附 / 脑靶向 / 活体成像

Key words

lactoferrin / curcumin / nanoscale lipid carriers / electrostatic adsorption / brain targeting / living animal imaging system

引用本文

导出引用
肖衍宇陈曦,邹浪,陈志鹏,张明菲,平其能. 乳铁蛋白修饰纳米脂质载体的制备及其脑靶向性评价[J]. 中国药学杂志, 2013, 48(20): 1755-1760 https://doi.org/10.11669/cpj.2013.20.016
XIAO Yan-yu,CHEN Xi,ZOU Lang,CHEN Zhi-peng,ZHANG Ming-fei,PING Qi-neng. Preparation of Lactoferrin-Modified Nanostructured Lipid Carriers and Evaluation of its Brain Targeting Efficiency[J]. Chinese Pharmaceutical Journal, 2013, 48(20): 1755-1760 https://doi.org/10.11669/cpj.2013.20.016
中图分类号: R944   

参考文献

[1] SCHWARTZBAUM J A, FISHER J L, ALDAPE K D, et al. Epidemiology and molecular pathology of glioma . Nat Clin Pract Neurol, 2006, 2(9):494-503.[2] CHEN H, LI J. Progress on receptor mediated tumor targeting therapy of cancer . Pharm Clin Res (药学与临床研究), 2008, 16(4): 288-292.[3] CHEN H, TANG L, QIN Y, et al. Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery . Eur J Pharm Sci, 2010, 40(2): 94-102.[4] HU K, LI J, SHEN Y, et al. Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: In vitro and in vivo evaluations . J Controlled Release, 2009, 134(1):55-61.[5] HUANG R, KE W, LIU Y, et al. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain . Biomaterials, 2008, 29(2):238-246.[6] NAGAI S, KURIMOTO M, WASHIYAMA K, et al. Inhibition of cellular proliferation and induction of apoptosis by curcumin in human malignant astrocytoma cell lines . J Neurooncol, 2005, 74(2):105-111.[7] GAO X, DEEB D, JIANG H, et al. Curcumin differentially sensitizes malignant glioma cells to TRAIL/Apo2L-mediated apoptosis through activation of procaspases and release of cytochrome c from mitochondria . J Exp Ther Oncol, 2005, 5(1):39-48.[8] BELKAID A, COPLAND I B, MASSILLON D, et al. Silencing of the human microsomal glucose-6-phosphate translocase induces glioma cell death: Potential new anticancer target for curcumin .FEBS Lett, 2006, 580(15):3746-3752. [9] KARMAKAR S, BANIK N L, PATEL S J, et al. Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells .Neurosci Lett, 2006, 407(1):53-58. AOKI H, TAKADA Y, KONDO S, et al. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: Role of Akt and extracellular signal-regulated kinase signaling pathways .Mol Pharmacol, 2007, 72(1):29-39. LIU E, WU J, CAO W, et al. Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma . J Neurooncol, 2007, 85(3):263-270. LI D M, WAN C L, LI J C. Development of small living animal lmaging technology . Chin J Biomed Eng (中国生物医学工程学报), 2009, 28(6): 916-921. ZHOU T, HAN Y, GONG W, et al. Applications of in vivo optical imaging technology in biomedicine . Chin J Stereology Mage Anal(中国体视学与图像分析), 2007,12(1):69-74. SUZUKI Y A, LOPEZ V, LONNERDAL B. Mammalian lactoferrin receptors: Structure and function . Cell Mol Life Sci, 2005, 62(22):2560-2575. SUZUKI Y A, SHIN K, LONNERDAL B. Molecular cloning and functional expression of a human intestinal lactoferrin receptor .Biochemistry, 2001, 40(51):15771-15779.
PDF(1654 KB)

Accesses

Citation

Detail

段落导航
相关文章

/